4th Cuneo City ImmunoTherapy Conference (CCITC)

Immunotherapy in Hematological Malignancies 2024

CUNEO October 10-12, 2024 Spazio Incontri Fondazione CRC

CAR-T in AML: ready for prime time?

Sarah Tettamanti, PhD

Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy

Organized by Prof. Massimo Massaia, SC Ematologia AO S.Croce e Carle, Cuneo - Italy and Centro Interdipartimentale di Biotecnologie Molecolari "Guido Tarone" (MBC), Torino - Italy

Immunotherapy in Hematological Malignancies 2024

Disclosures of Sarah Tettamanti

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
N/A							
CUNEO, October 10-	12, 2024	0000	E CA		- 2 01		

CAR T cells in AML: clinical trials

ClinicalTrials.gov Search Results 13/02/2024

CAR T cells in AML: clinical trials

• Active trials

NCT Number	Interventions	Study Title	Sponsor
		PRGN-3006 Adoptive Cellular Therapy for CD33-Positive Relapsed or Refractory	Precigen, Inc
NCT03927261	PRGN-3006 I Cells	AML, MRD Positive AML or Higher Risk MDS	
	Autologous CD123CAR-CD28-CD3zeta-	Genetically Modified T-cell Immunotherapy in Treating Patients With R/R AML and	City of Hope
NCT02159495	EGFRt	Persistent/Recurrent BPDCN	Medical Center
		Lentivity II. Deditested CD122 Autologeus T Cells in ANAL	University of
NCT03766126	CARTIZ3 CEIIS	Lentivirally Redirected CD123 Autologous T Cells In AML	Pennsylvania

CAR T cells in AML: clinical trials

• Recruiting trials

CT Number	TARGET	Interventions	Sponsor
CT05748197	ADCLEC	ADCLEC.syn1 CAR T cells	Memorial Sloan Kettering Cancer Center
CT05457010	ARC	ARC-T Cells	Arcellx, Inc.
CT06118788	BG1805	BG1805	Guangzhou Bio-gene Technology Co., Ltd
CT06420063	CD123	CD123/CD33 CART	Essen Biotech
CT04318678	CD123	CD123-CAR T	St. Jude Children's Research Hospital
CT04265963	CD123	CD123 CAR-T cells	Chongqing Precision Biotech Co., Ltd
CT04272125	CD123	CD123 CAR-T cells	Chongqing Precision Biotech Co., Ltd
CT06006403	CD123	CD123 CAR-NK cells	Chongqing Precision Biotech Co., Ltd
CT04678336	CD123	CART123 cells	University of Pennsylvania
CT04230265	CD123	UCART + TMCD123	AvenCell Europe GmbH
CT03190278	CD123	UCART123v1.2	Cellectis S.A.
CT05949125	CD123	DRUG: R-TM123 DRUG: Allo-RevCAR01-T	AvenCell Europe GmbH
ICT04257175	CD19	CAR-T CD19	Sheba Medical Center
ICT03896854	CD19	CART-19	Shanghai Unicar-Therapy Bio-medicine Technology Co.,Ltd
ICT05942599	CD33	BE CAR33 T Cells (BE752TBTTBCAR33PBL)	Great Ormond Street Hospital for Children NHS Foundation Trust
ICT05672147	CD33	CD33 CAR T-cells	City of Hope Medical Center
ICT05984199	CD33	VCAR33	Vor Biopharma
ICT05945849	CD33	CD33KO-HSPC; CART33	University of Pennsylvania
ICT05665075	CD33	CD33CAR NK	Zhejiang University
CT05105152	CD33	SC-DARIC33	Seattle Children's Hospital
ICT03971799	CD33	CD33CART autologous	Center for International Blood and Marrow Transplant Research
ICT06017258	CD371	CD371-specific/YSNVz/I-18 CAR T cells	Memorial Sloan Kettering Cancer Center
ICT05239689	CD38	CD38 CAR T-cells	Zhejiang University
ICT05442580	CD38	CART-38 cells	University of Pennsylvania
ICT06197672	CD4	CD4CAR	Huda Salman
ICT06326463	CD70	CD70-CAR T cell	St. Jude Children's Research Hospital
ICT05454241	CD70	CD7 CAR-T	ring Wang
ICT05995028	CD70	Universal CD7-specific CAR gene-engineered T cells	Shenzhen Geno-Immune Medical Institute
ICT04662294	CD70	CD70 CAR T-cells	Zhejiang University
ICT05377827	CD70	CD7 Allogeneic CAR T-Cells	Washington University School of Medicine
ICT05266950	CI-135	CI-135 CAR-T cells	Beijing Boren Hospital
ICT05252572	CLL1	CLL1 CAR T-cells	2hejiang University
ICT06307054	CLL1	CLL-1 CAR NK cells	Shanghai General Hospital. Shanghai Jiao Tong University School of Medicine
ICT04219163	CU1	CIL-1 CAR T cells	Baylor College of Medicine
CT04923919	CLL1	CLL1 CART cells	920th Hospital of Joint Logistics Support Force of People's Liberation Army of China
ICT06110208	CLL1	CLL1 and CD38 dual-target CAR-T injection	920th Hospital of Joint Logistics Support Force of People's Liberation Army of China
CT04884984	CLL1	CLL1 CART	The First Affiliated Hospital of Soochow University
CT06128044	CLL1	CLL1 CAR T	Caribou Biosciences. Inc.
ICT05995041	CLL1, CD33, CD38, CD123	CLL-1, CD33, CD38 and/or CD123-specific universal CAR- T cells	Shenzhen Geno-Immune Medical Institute
CT06492304	CTX131	CTX131	CRISPR Therapeutics
ICT04167696	CYAD	CYAD-02	Celvad Oncology SA
ICT06326021	FL-33	autologous FL-33 CAR T	Beijing GoBroad Hospital
CT05023707	FLT3	FLT3 CAR-T	The First Affiliated Hospital of Soochow University
CT05445011	FLT3	FLT3 CAR T	Wuhan Union Hospital. China
ICT05432401	FLT3	FLT3 CAR T	PersonGen BioTherapeutics (Suzhou) Co., Ltd.
CT04803929	ILT3	ILT3 CAR-T	Carbiogene Therapeutics Co. Ltd.
CT05488132	SIGLEC 6	Siglec-6 CAR-T cells	Kuzhou Medical University
CT05017883	TAA05	TAA05 cell injection	PersonGen BioTherapeutics (Suzhou) Co., Ltd.
ICT06125652	TIM-3/CD123	Tim-3/CD123 CAR-T cell	Kuzhou Medical University
ICT03291444	.,	CAR T cells BIOLOGICAL: peptide specific dendritic cell	Zhujiang Hospital

ClinicalTrials.gov Search Results 09/10/2024

First wave of Anti-AML CARs in clinic: 2013-2022

Limited persistence & Activity Why ?

ASH 2022 Dr. Gill, Upenn SPOT LIGHT SESSION

The bone marrow AML niche: the sanctuary of LSCs

Tettamanti S, Pievani A, et al., Leukemia 2021

T Cell Fitness and Autologous CAR T Cell Therapy in AML

Quality of CAR T cell product \rightarrow CLINICAL RESPONSE

CD33CAR NCT03126864 University of Texas MD Anderson Cancer Center

- **10** R/R AML pts enrolled, **only 3** pts treated
- Second generation CAR (41BB), autologous T cells
- All three patients who received CD33-CAR-T cells have died, due to disease progression; study closed;
- The sponsors have transitioned to a platform that facilitates **more rapid production and in vivo expansion** with a product referred to as PRGN-3006 (NCT03927261)

CD123 CAR-adult, multicentric phase I, United States

cells

- AMELI-01 ٠
- Allogeneic UCART-123v1.2 (41BB) ٠
- FC or FCA (Alemtuzumab) lymhodepleting regimen (8pts + 8 pts) ٠
- FCA regimen \rightarrow improved LD and significantly higher UCART123v1.2 cell expansion •
- 1 pt in the DL2 (6.25x10⁵ cells/kg) FCA arm achieved >90% blast reduction at Day 28 ٠
- 1 pt in the DL2 FCA arm achieved a long term durable MRD negative CR (now past 12 months) ٠
- Based on observed UCART123v1.2 expansion patterns and cytokine profiles, the study will be enrolling patients in the FCA 2-dose ٠ regimen arm (DL2)

Switch on/off system: UniCAR T cells

ASH 2022: N=14 CRS 12/14 4 PR, 2 CRi, 1 CR

Allogeneic CD123-Directed Switchable CAR-T

AVC-201 is the world's first CRISPR-engineered switchable allogeneic CAR-T designed to fully avoid rejection by both the innate and adaptive host immune system.

Wermke et al., Blood 2021;

 Table 4. Completed CAR-NK cell clinical studies with reported outcomes in relapsed/refractory acute myeloid leukemia. PD: progressive disease, CR: complete response, RD: relapsed disease, PB: peripheral blood, N/A: information not available.

Target Antigen	Phase	NK Cell Source	CAR Construct/Genetic Modifications	Reported Outcomes
CD33	I	NK92	[62] Tang et al.: N/A	3/3 PD.
	I	PB	[89] Huang et al.: N/A	4/10 PD, 4/10 RD after CR, 2/10 CR

Table 5. Active/recruiting CAR-NK cell trials in acute myeloid leukemia. r/r: relapsed/refractory, AML: acute myeloid leukemia, MDS: myelodysplastic syndrome, iPSCs: induced pluripotent stem cells.

NCT Identifier	Phase	NK Cell Source	Target Antigen	CAR Construct/Genetic Modifications	Disease	Location
NCT05574608	Ι	Unknown	CD123	Unknown CAR design	r/r AML	The 5th Medical Center of Chinese PLA General Hospital, Beijing, China
NCT05215015	Ι	Unknown	CD33, CLL-1	Unknown CAR design	r/r AML	Wuxi People's Hospital, Wuxi, China
NCT04623944 [90]	Ι	Peripheral blood of haplo-matched, related, or unrelated donors	NKG2D ligands	NKG2D-OX40-CD3ζ Additional modification membrane-bound IL15	 r/r AML intermediate, high and very high-risk r/r MDS 	Multicenter, Nkarta Inc., San Fransisco, CA, USA

Molecular targeted drugs & CAR T cells

Dasatinib + CD123CAR T pediatric- St. Jude Children's Research Hospital, United States

- Bridge to allo-HSCT Phase 1 study
- Lenti-CD123-CD28 CAR and a CD20 safety switch, autologous CD4/CD8 T cells
- Upcoming CD123-CAR T cell products will be manufactured in the presence of **dasatinib** to limit T-cell differentiation and exhaustion

Azacitidine

ARTICLE http://doi.org/10.1038/s43467-021-26683-0 OPEN Check for updates

Demethylating therapy increases anti-CD123 CAR T cell cytotoxicity against acute myeloid leukemia

Nadia El Khawanisy^{2,23,4} Amy Hughes², Wenbo Yu⁵, Renier Myburgh⁶, Tony Matshulla^{10,7}, Sanaz Taromio^{13,8}, Konrad Aumann⁸, Jade Clarson¹³⁰, Janaki Manoja Vinnakola³, Khalid Shoumariyeh³, Cornelius Mething^{10,4}, Angel F. Lope^{2,24}, Michael P. Brown^{10,24,8}, Justus Duyste¹, Lutz Hein^{0,7}, Markus G. Manzo⁶, Timothy P. Hughes^{12,20}, Deborah L. White^{12,20}, Agnes S. M. Yong^{10,21,34,1648} & Bohart Taicara, ^{31,558}

HDAC inhibitors

Chimeric Antigen Receptor T Cells Targeting NKG2D-Ligands Show Robust Efficacy Against Acute Myeloid Leukemia and T-Cell Acute Lymphoblastic Leukemia

Lina Driouk¹, Joanina K. Gicobi¹, Yusuke Kamihara¹, Kayleigh Rutherford², Glenn Dranoff³, Jerome Ritz^{1,4} and Susanne H. C. Baumeister^{1,4,5,6*}

"Fast" CAR T cells in AML

Manufactured Overnight for Next Day Infusion

A single infusion of PRGN-3006 led to objective responses in AML patients

NCT03927261

Dual CAR combinatorial strategies to gain specificity and safety

Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML

S. Haubner ⁽¹⁾^{1,2} · F. Perna³ · T. Köhnke^{1,2} · C. Schmidt^{1,2} · S. Berman³ · C. Augsberger^{1,2} · F. M. Schnorfeil^{1,2} · C. Krupka^{1,2} · F. S. Lichtenegger^{1,2} · X. Liu^{1,2} · P. Kerbs^{1,4,5} · S. Schneider¹ · K. H. Metzeler¹ · K. Spiekermann¹ · W. Hiddemann¹ · P. A. Greif^{1,4,5} · T. Herold ⁽¹⁾ · M. Sadelain³ · M. Subklewe^{1,2,4,5}

Haubner et al., Leukemia 2019; Willier, Blood 2021

IMMUNOBIOLOGY AND IMMUNOTHERAPY

CLEC12A and CD33 coexpression as a preferential target for pediatric AML combinatorial immunotherapy

Semjon Willier,¹ Paula Rothämel,¹ Maximilian Hastreiter,¹ Jonas Wilhelm,¹ Dana Stenger,¹ Franziska Blaeschke,¹ Meino Rohlfs,¹ Theresa Kaeuferle,¹ Irene Schmid,¹ Michael H. Albert,¹ Vera Binder,¹ Marion Subklewe,¹2 Christoph Klein,^{1,2} and Tobias Feuchtinger¹

Dual CARs: first clinical data

EHA 2020

FIRST-IN-HUMAN CLL1-CD33 COMPOUND CAR (CCAR) T CELL THERAPY IN RELAPSED AND REFRACTORY ACUTE MYELOID LEUKEMIA

Fang Liu, Hongyu Zhang, Lihua Sun, Yecheng Li, Shan Zhang, Guangcui He, Hai Yi, Masayuki Wada, Kevin G Pinz, Kevin H Chen, Yu Ma, Yisong Xiong, Yi Su, Yupo Ma

	Age/sex Dx	Prior treatment	BM Blast%	CD33/CLL1 expression	Cytogenetic /molecular	Origin of car-t cells	CAR-T Dose	response s
P1	44/m AML	4 chemo	47%	CD33*/CLL1*	ASXL1,TP53	auto	0.7x10 ⁶ /kg	MRD.
P2	6/f JMML-AML	5 chemo	81%	CD33+/CLL1+	Complex FLT3-ITD	auto	2x10 ^s /kg	MRD'
P3	23/F CML AP	3 TKIs for 5 years	1.63%	CD33*/CLL1*	t(9;22) T315mut	auto	1.1x10 ⁶ /kg	MRD [.]
P4	43/F M2	3 chemo	42%	CD33+/CLL1+	NK FLT3-ITD	auto	2.8x10%kg	MRD ⁻
P5	32/F AML	3 chemo	19%	CD33*/CLL1*	NK MLL	auto	2x10%/kg	MRD-
P6	48/F AML	5 chemo	94%	CD33+/CLL1+	t(8;21) AML1/ETO CKIT	auto	1.3x10%/kg	MRD.
P7	23/F AML	4 chemo	74%	CD33*/CLL1*	t(8;21) AML1/ETO CKIT	auto	1x10º/kg	NR
P8	27/F AML	5 chemo	93%	CD33*/CLL1-	NA MLL AF9	auto	2.3x10%kg	NR
P9	42/f AML	2 chemo	7%	CD33*/CLL1+	T(3;3) RUNX1	MSD donor	3.7x10%kg	MRD-

Figure 1. Patient treated with cCAR achieved complete remission. A. 12 days post cCAR infusion, leukemia blasts comprised 98% of the bone marrow. B. 19 days post cCAR infusion, total myeloid ablation had taken place in patient's bone marrow with only CAR T cells existing. Results were confirmed by flow cytometry showing the absence of blasts. Sternal bone marrow aspiration also showed similar findings.

- cCAR carrying two fully equipped CARs (costimulus and CD3z domains)
- All CRS, neurotoxicity and other adverse events were resolved after treatment;
- 7 MRD-, 6 underwent HSCT→ 5 pts successfully engrafted with a persistent full chimerism (1 died of sepsis before engraftment)

p=0.0286

A Phase I Study of ADCLEC.syn1 CAR T cells in Adult Patients with Relapsed or Refractory Acute Myeloid Leukemia

Boolean Logic-gated CARs: Dual AND-gated CD123-CD33 CARCIK cells

- Split IL3 zetakine CAR and anti-CD33 CCR to improve safety (Perriello V, Rotiroti M et al., Blood Adv 2022)
- Ongoing preclinical characterization of scFv derived anti-CD123 CAR (Collaboration with Prof. Falini, University of Perugia)

Rechallenge Cytotoxicity Assay

• In vivo efficacy of Dual CARCIK cells

• Developing humanized NSG mice model to assess efficacy and toxicity

Non-viral Transposon based CAR-CIK cell engineering

Cytokine-Induced killer (CIK) cells

- Basal antitumor activity
- Low GvHD
- Safe and well tolerated

Introna M et al., Haematologica 2007 Pievani A et al., Blood 2011 Introna M et al., BBMT 2017 Gotti et al., Cytotherapy 2022

Sleeping Beauty transposon system

- Random pattern of integration → reduced genotoxicity
- Cost effective

Magnani CF et al., Oncotarget. 2016. Magnani CF et al., Hum Gene Ther. 2018 Arcangeli S...Tettamanti S et al, Mol Ther 2017 Rotiroti Mc...Tettamanti S et al., Mol Ther 2020.

Donor derived cells

• Healthy T cells

Magnani CF et al., JCI 2020

Cytokine polarization

(IFN-y)

CD56

NKGD2

TCR

CD123/CD33 Dual CARCIK from Lab to Clinic: Translating Research into Clinical Trials

A phase I/II single-arm, clinical trial to evaluate the safety and preliminary efficacy of CD123/CD33 dual CARCIK cell for relapsed/refractory acute myeloid leukemia

Improved antileukemic activity and maximize the presence of CARCIK in the BM in AMLPDX

IL-2RA 11 II-3 P = 0.0042

microenvironment stimulated cognate receptors on AML blasts, leading to JAK/STAT signaling, increased blast viability and resistance to CART cell killing

Cytokine-mediated CAR T therapy resistance in AML

- Autologous CD123 CAR T
- 10/12 patients developed CRS
- Of the six patients evaluated for response, 2 CR, 1CRi, and 3 PD
- The overall response rate was 25%.
- The median duration of remission for responding patients: 84 to 381 days, with a median OS from infusion of 160 days.

g P = 0.0078 PBS + DMSO cells -log₁₀(adjusted P) Live AML cells µl⁻¹ 000 000 009 + ruxolitinib IL-15 Fold increase in exin V⁻ leukemia c c 7 7 9 GM-CSF + ruxolitinib old increase in live AML cells ^rold increase in live AML cells Fold increase in live AML cells IDO1 annexin / log, fold change (peak serum/pre-LD chemo serum) Baseline Peak 1-1 1:2 1:16 285 serum serum 28⁵ 13 E:T ratio

IL-3, GM-CSF, and FLT3L were secreted during the CART-123 therapy, promoting AML blast survival via JAK-STAT signaling.

Bhagwat A et al., Nature Medicine (2024)

Conclusions

- CAR T therapy can be a potent immunotherapy approach for AML treatment
- **Barriers that limit the full therapeutic potential** of CAR T cells (i.e. AML complexity, challenging CAR T manufacture, the cross talk with the immunosuppressive TME)
- The main issues are related to low CAR T cell persistence and transient anti-leukemic activity
- Need to implement anti-AML CAR T therapy with more fit T cells, smarter CARs and combinatorial

strategies \rightarrow Active preclinical research ongoing (i.e. CD33KO CD34+ or epitope edited CD34+; targeting of the TME)

 Careful and rationally- designed clinical trials are warranted to increase the therapeutic index of CAR T therapy in AML

How to foster CAR T cell therapy for AML

<u>Acknowledgements</u>

Prof. Brunangelo Falini Dr. Vincenzo Perriello Francesco Morena **University of Perugia**

Daniele Prati Ilaria Ratti Cord Blood Bank, Policlinico di Milano

Charles A. Nicolette, CEO Mark DeBenedette, VP of R&D Irina Tcherepanova, COO Lori R. Harrelson, CFO

